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Temperature-time histories at the interface between 
a gas and a solid 

By JOHN F. CLARKE 
College of Aeronautics, CranEeld, England* 

(Received 24 October 1961) 

The effects of compressibility, temperature-jump and gaseous adsorption are 
considered in an attempt to predict the temperature-time history at  the interface 
between a gas and a solid when both the temperature and the pressure of the gas 
are suddenly changed. It appears that temperature-jump will be the dominant 
effect, with adsorption contributing significantly in some circumstances. Com- 
pressibility is of minor importance during practically-resolvable time intervals. 
Some experimental evidence which gives tentative support to the results of the 
analysis is commented upon. 

1. Introduction 
In the sections to follow we attempt to estimate the way in which the tempera- 

ture at  the surface of a solid varies with time when the temperature and pressure 
of a gas in contact with the solid are both suddenly changed. We assume that the 
interface lies in the plane x = 0 and that both gas and solid are of semi-infinite 
extent. Only one-dimensional unsteady effects are considered. 

The gas is treated as compressible and ‘ideal’, the latter restriction being taken 
in the sense that we do not attempt to cater for the effects of long relaxation 
times in the internal modes of polyatomic molecules. Equations governing the 
temperature behaviour in both gas and solid are derived and then linearized so 
that analytical solutions can be obtained. It is primarily during the course of 
formulating proper boundary conditions for these equations that we encounter 
most of the interesting physical aspects of the problem. In particular we would 
mention here that it is both possible and desirable to include the effects of 
temperature-jump and of the adsorption or desorption of gas onto or from the 
solid surface. 

From a practical point of view, the problem to be studied represents an 
idealization of the situation arising when a plane shock wave reflects from a 
co-planar solid wall. In  that event, both gas temperature and pressure are 
suddenly raised to new values and the subsequent energy transfer processes 
between the hot, high pressure gas and the cold solid act to raise the solid’s 
temperature. It is possible to follow temperature changes on the solid surface 
with the aid of a thin-platinum-film resistance thermometer, and some results 
obtained in this way from shock-tube experiments are mentioned briefly below, 
in support of some of the theoretical predictions. 

* At the Department of Aeronautical Engineering, Stanford University, Stanford, 
California, for the academic year 19SljSZ. 
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2. The equations 
The equations of mass, momentum and energy conservation are, respectively, 

~p au 
-+p- = 0, 
Dt ax 
DU a p  a7 
Dt ax ax  p--+--- = 0, 

Dh DP aq au 
p---+-- Dt Dt ax ‘z= O’ (3) 

where DIDt is written for ajat + u ajax in the present one-dimensional unsteady 
case. p, u, p and h are the density, gas velocity, pressure and specific enthalpy 
and 7 and q are the viscous stress and energy flux rate, respectively. For the 
problem in hand we shall assume that 

au aT 
7 = ($p+pw)G, q = -A- 

ax ’ (4) 

where p and p, are the shear and equivalent bulk viscosities, the latter accounting 
for the presence of any rapidly relaxing internal degrees of freedom which the gas 
molecules may possess; A is the coefficient of thermal conductivity, appropriately 
modified after the style of Eucken to account for the part played by rapidly 
relaxing degrees-of-freedom in the energy-transfer processes. 

In  dealing with a pure gas, the thermodynamic equation may be written in the 
form 

where s is the specific entropy. As in equation (a), T is the temperature appro- 
priate to all classes of energy storage in the gas molecules. Equations (3) and (5) 

( 5 )  Tds = dh-( l /p)dp ,  

DS aq au 
Dt ax ax* 

together show that 
pT- = - - - + T -  

Since p can be regarded as a function of p and s, equation ( 1 )  can be rewritten with 
the aid of (6) to read 

However, 

where a is the local isentropic speed of sound and it can be shown that 

p2TR 

provided that the thermal and caloric equations of state are 

and 

P = PRT, 
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respectively. e is the specific internal energy and C, and C, are the specific heats 
at constant pressure and constant volume, respectively. R is the gas constant 
for the particular gas in question. One can verify that the relation 

C,-C, = R 
is satisfied and also thak a2 = YPIP, 
where y is the usual ratio of specific heats. If equations (10) and (1  1 )  are valid 
descriptions of the thermodynamic behaviour of the gas, C,, C, and y are, at 
worst, functions of T only and may (in the case of classically excited molecular 
states) be constants. We imply that a is the equilibrium speed of sound and there- 
fore exclude considerations of relaxation effects, as we have implied in the 
remarks following equation (4). * 

With the foregoing results and assumptions it is now possible to rewrite 
equation (7) in the form 

-+paZ-+ (y - l )  
DP a t 6  

Dt ax 

Equations ( 2 ) )  (3) and (14) now constitute three equations which are to be solved 
for the three unknown quantities p, u and T .  

In  the work to follow we shall simplify this task by assuming that the perturba- 
tions imposed on some uniform quiescent state of the gas are sufficiently small for 
these equations to be linearized and still give an adequate description of the 
principal physical processes involved. We make no attempt to justify such a 
procedure, other than to say that our primary purpose is to attempt to predict in 
a broad sense how gas-solid interactions show up in the temperature-time history 
a t  the interface: detailed and accurate numerical results are not our present 
concern. Accordingly, we shall use equations ( Z ) ,  ( 3 )  and (14) in the approximate 
forms 

which are obtained by ignoring all squares and products of small disturbance 
quantities. The suffix co denotes the relevant uniform, reference state of the gas 
(which is to be defined more carefully below). We note in particular that equa- 
tions (15) to (17) include no convective effects and also that the term T(au/ax) 
(i.e. the viscous dissipation term) vanishes in this approximation. 

3. Boundary conditions 
At this stage we must begin to formulate the actual problem to be solved. The 

gas is assumed to occupy the the semi-infinite region lying to the right of the 
plane x = 0. For all times t < 0 it is assumed that the gas is at the same tempera- 

* An account of relaxation effects in circumstances similar to those under discussion 
here ha.s been given by Clarke (1961). 

4 Fluid Mech. 13 
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ture as that of a semi-infinite solid which lies to the left of x = 0. We also assume 
that for all times t < 0 the gas is a t  some uniform ‘low’ pressure; we need not be 
more specific about what is implied by the adjective ‘low’ at the present stage. 

An important implication of this initial, quiescent condition is that the 
processes of adsorption and desorption of the gas on to or from the solid surface 
shall be in equilibrium. A gas molecule can only be adsorbed by a solid on one of 
a number of sites; the so-called ‘active sites for adsorption ’. Let us suppose that 
N, of such active sites exist on every unit area of the solid surface which is exposed 
to the gas and let us further suppose that, prior to the instant of time t = 0, Nu, of 
these active sites per unit area are actually occupied by a gas molecule. The solid 
is being continually bombarded by gas molecules (even in an equilibrium condi- 
tion) as a result of their random thermal motions, so that adsorption must be a 
continuously-occurring process. We shall write the number adsorbed per unit area 
per unit time as 

where Nu here is a general number of occupied active sites (not necessarily an 
equilibrium number, as we have implied in the case of Nu, above); k, is a ‘rate 
constant’ for the adsorption process and equation ( 1 8 )  states that the rate of 
adsorption per unit area per unit time is equal to k, times the number of un- 
occupied active sites. If, as we shall assume, any gas molecule which strikes the 
surface can be adsorbed, then k, is simply equal to the reciprocal of N, times the 
total number of molecules striking the wall per unit area per unit time. The 
bombardment rate is equal to the relevant number density of molecules adjacent 
to the wall, multiplied by the mean molecular velocity in the direction normal 
to (and towards) the surface. 

The reverse process of desorption must also be occurring concurrently with 
that of adsorption and, with N, occupied sites existing on unit area of the wall, 
the number of molecules desorbed from unit area in unit time is written as 

k,(NS -Nu), (18) 

kd (19)  

k d  is a ‘rate constant ’ for the desorption process. The net rate of accumulation of 
gas molecules on the solid surface can clearly be written as 

Under equilibrium conditions there is a dynamic balance between the adsorp- 
tion and desorption processes; the left-hand side of equation (20) is equal to zero 
and one finds that 

where 0- is written for NUIN,, i.e. c i s  equal to the fraction of the surface covered by 
gas molecules. As remarked earlier, k, is equal to the rate of molecular bombard- 
ment of the solid surface times l /N,  (if no activation energy for adsorption is 
required), so that it is linearly proportional to the pressure and inversely pro- 
portional to the square root of the absoIute temperature. In  fact we can write 
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where rn is the molecular mass and k is Boltzmann’s constant. The desorption 
constant is frequently a function of temperature only and, accordingly, equa- 
tion (21) can be re-expressed in the form 

known as Langmuir’s adsorption isotherm. g(T) is a function of temperature 
only and it may be calculated if the partition functions for a gas molecule in the 
gaseous and adsorbed states are known (see, for example, Rushbrooke 1949). The 
ratio k,/k, is analogous to the equilibrium constant appearing in problems of 
chemical equilibrium: since it is possible to evaluate this ratio statistically, or to 
measure it experimentally, it follows that one need only have to find k, or k,, 
whence the other one will follow from the equilibrium relation. 

In  the current problem we are more interested in the non-equilibrium condition, 
so that the remarks subsequent to equation (20) may not appear to be relevant. 
However, if we make some kind of quasi-equilibrium assumption about the 
adsorption processes, as is currently popular in chemically-reacting-gas-flow 
studies, we may still use k, in the form (22) and find k, by the method briefly 
indicated above. At all events, it is clear that B change in gas pressure and 
temperature will always change both k, and k, (by different factors in general) 
so that the equilibrium adsorption state indicated by (21) or (23) will cease to 
hold true for the new p and T values. Additional adsorption (or desorption) will 
then occur at a rate governed by equation (20). 

I n  the present problem we intend to examine the behaviour of the temperature 
of the solid at x = 0, subsequent to sudden changes which are to be imposed on 
the gas temperature and pressure at  time t = 0. In  other words, we assume that 
for t < 0 both solid and gas have the same temperature (let us say To). The gas is 
assumed to be at a ‘low’ pressure (let us say po)  during this time. Then, at time 
t = 0, both p and T are raised from p ,  top, and from To to T, throughout the gas 
(i.e. for all x > 0). As a result of this imposed disturbance the system is forced out 
of equilibrium: in particular there will be a flux of heat from the gas to the solid 
which will act to raise the solid’s temperature a t  the interface 2 = 0. It is this 
quantity which is to be our primary concern here since, as mentioned in the 
Introduction, it is possible to measure it experimentally. We shall assume that 
the gas dynamic equations (15), (16) and (17) are linearized about the perturbed 
values p ,  and T,. A t  t = 0 the gas velocity u is zero, as are all of its derivatives. 
In  formulating the boundary conditions for this problem it is necessary to include 
the adsorption processes discussed briefly above, since these will give rise to an 
influx or efflux of the gas into or out of the wall. In  addition, of course, it must be 
remembered that the desorption process is an endothermic one (i.e. energy must 
be supplied in order to detach a gas molecule from its ‘active site’ on the surface). 
Therefore an appropriate term must be added to the energy flux into the solid. 
(The situation is very similar to that arising in studies of ablating bodies, where 
the latent heat of melting or sublimation must be accounted for). 

We shall assume that, once k, and k, have been changed to values appropriate 
to the new state of the gas, they subsequently remain constant; additionally, we 

4-2 
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assume that the number of active sites, N,, is a constant. In  this case (20) inte- 
grates very simply to give 

(24) ___ Ea -% - N = A e-(ka+kd)t, 
k a + k ,  a 

where A is a constant to be evaluated. From (21) we observe that the group 
k,N,/(k,+k,) must be equal to the new equilibrium number of occupied sites 
(N,,, say), which is eventually achieved as t -+ 00. At time t = 0, we have already 
stated that the number of occupied sites is Na0, so that A is simply equal to 
N,, - Nao, or AN for short. Thus we can rewrite (24) in the form 

where 

Nae - Nu = AN e-k't, 

E' = k, + k,. 

The assumption of new constant values for k, and k, for times t > 0 may not be 
especially good from the strictly physical point of view, since both p and T will 
vary with time after the instant t = 0, but it does not seem unreasonable in the 
context of the linearizations which are to be adopted anyway (see previous 
section). At all events, (25) describes in broad terms something of the gas 
behaviour arising from adsorption or desorption. In  particular we can easily find 
an expression for the mass flux of gas into the wall as a result of the imposed 
unbalance of these two processes. This is clearly 

m(dNa/dt) = mk'AN e-Vt, (27) 

- (pu), = mk'ANe-k't, (28) 

and the gas velocity boundary condition at  x = 0 becomes 

the suffix w implying evaluation at x = 0. If the gas density is changed to the new 
value pm at time t = 0, then we may write the linearizedversion of (28) in the form 

-pmu,  = mE'ANe-k't, (29) 

since the gas velocity u is implied to be a small quantity anyway. 
The remaining boundary conditions are provided by temperature and energy- 

flux considerations at the interface. We assume that the temperature of the solid 
(written as To + T,) satisfies the usual diffusion equation, namely 

since To is a constant. K, is the appropriate thermal diffusivity (assumed con- 
stant). The gas and solid temperatures at x = 0 (T, and To+ Tmw, respectively) 
must belinked via an appropriate ' temperature-jump, condition (see, for example, 
Clarke 1 9 6 0 ~ )  1961) which can be written here in the form 

where a' = (2 - r )  Z/r. (32) 

Here r is an average accommodation coefficient for the translational and internal- 
energy states of the gas molecules and I is an average mean free path for the 
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transfer of these forms of energy. In  the analysis to follow it is slightly more 
convenient to measure the gas temperature, not from the ambient value existing 
uniformly for all x at  times t < 0, but from the perturbed gas temperature, which 
we write as T,. Accordingly, we define a temperature 8 such that 

T = T,+e, 

whence (3  1)  becomes d ( E), = 8, - T,, + T, - To. 

Conservation of energy at the interface x = 0 requires that 

(33) 

(34) 

where the various new quantities introduced here are as follows: A, and h are the 
thermal conductivities of the solid and gas, respectively (suffix w signifying 
evaluation at x = 0 ) ,  whilst $is the heat liberated by the adsorption of unit mass 
of gas. The term on the left-hand side of ( 3 5 )  therefore represents the heat con- 
ducted (in the negative x-direction) into the solid whilst those on the right-hand 
side are, respectively, the heat conduction through the gas and the convective 
flux of ‘adsorption energy’. Equations (28), (34) and ( 3 5 ) ,  together with the 
conditions of finiteness which must be imposed on I’ (or 8) and (T, + To) and their 
spatial derivatives as 1x1 --f 00, will be found to be sufficient boundary conditions 
for a solution of the current problem. The initial conditions are that both T,, and 0 
and all of their derivatives shall be zero at the instant t = 0. We shall summarize 
the mathematical content of the problem after one or two further developments. 

As set up so far, the problem is concerned primarily with the gas and solid 
temperatures. Consequently it seems advisable to reduce the equations (15), (16) 
and (17) so that we have an equation in T (or 8) alone. This is quite readily 
accomplished and we find that 

where K = AmlPm Cp,, Pr = (Pm + B ~ v w )  Cp,lAm, (37) 

K is the thermal diffusivity of the gas (evaluated in the initial perturbed state) and 
Pr is an appropriately defined Prandtl number. We shall henceforth assume that 
Pr is equal to 8, since this greatly simplifies the analysis to follow whilst at the 
same time it is a value not too far removed from the correct one for a variety of 
gases (in particular, diatomic gases of course). It should be remarked that solu- 
tions of (36) have been obtained previously; by Cole & Wu (1952) for the case of 
Pr = 0 and using impulse function inputs to an infinite expanse of gas, and by the 
author (1960 b )  for both Pr = 0 and Pr = 2 in connexion with a gas-solid contact 
problem similar t o  that currently under investigation but using boundary con- 
ditions somewhat simpler than those discussed above (see Q 7.1 below). 

In  order to proceed with a solution of equations (30) and (36), from which the 
behaviour of T,, is to be deduced, it is now only necessary to translate the 
‘velocity’ condition of (28) (or rather its linearized version in (29)) into a ‘tem- 
perature’ condition. This can be done by eliminating p and all derivatives of u 



54 John P. Clarke 

which contain operations involving a/ax from (15 ) ,  (16) and (17), leaving an 
expression €or a2u/at2 in terms of T (or 8) derivatives only. In general terms, this 
expression is 

(38) 
1 a 2 u  a g e  4y,PrK2 a4e a3e 4PrK a3e 

cpm a t2  axat 3a: ax3at ax3 3a: axatz’ 
K - + - -  ---=----- 

but it becomes slightly simpler for P r  = $, 

4. Summary of the equations to be solved 
At this stage it seems advisable to summarize the equations to be solved, 

together with the relevant initial and boundary conditions. Before doing so, we 
note that the quantities ~ / a ,  and K/a% have the dimensions of length and time 
respectively: they are in fact of the order of the mean free path for intermolecular 
collisions and the corresponding collision time interval, respectively. Accordingly, 
we may non-dimensionalize both x and t ,  to x‘ and t’, in the form 

X’ = X U , / K ,  t’ = tag/K. 

Then, with P r  = $, (36) and (30) become 

- --__ 

The initial conditions are now that 

T, and all 2‘- and t’-derivatives of T, are zero for x’ < 0, t’ < 0, 

and that 

8 and all 5’- and t’-derivatives of 0 are zero for x’ > 0, t’ = 0. 

The boundary conditions are now 

= (T,-T~)+~,-T,, for x = 0, t > 0, 

where d = ( 2 - r ) / r ;  

where 

that 
T, and all X I -  and t’-derivatives of T, + 0 as x’ -+ - 00 for all t’, 

8 and all XI- and t’-derivatives of 8 -+ 0 as x‘ -+ + co for all t‘. 
and that 
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Equations (40) to (43) do not require any further explanation. In  deriving (44), 
so that the new quantity a appears, we have made the not-too-unreasonable 
assumption that the free path 1 appearing in a’ (see (32)) is equal to Kla,. In  
writing down (46) we have used (28) to eliminate - (pu), from (35). Additionally 
we have assumed that A, is a constant (so that the suffix w is now no longer 
necessary) and also that A, can be replaced by the initial value A,. This is 
reasonably consistent with the linearizations leading up to (40). Both 7 and w 
(see (46) and (47)) are treated as constants from now on. In  writing (48) we have 
not eliminated Pu/W via the appropriate version of (29), since u at  x = 0 and 
t 2 0 is in the nature of a step function. At the initial instant, when T is raised 
suddenly to T,, etc., both u and all of its derivatives with respect to either x‘ or t ’ ,  
are zero. Immediately subsequent to this time, however, u at x’ = 0 and its 
derivatives with respect to t’ can be found from (29). The method of solution 
adopted below will take account of the initial conditions in a proper fashion. 

5. Laplace transform solutions 
The initial and boundary value problem set out above is best solved by the 

Laplace transform method. We denote the transform of a quantity with respect 
to time t’ by a bar over the appropriate symbol; e.g. 

With the initial conditions set out in (42) and (43), equations (40) and (41) in 

(51) 

( 5 2 )  
the primes denoting differentiation with respect to x‘. Solutions of these two 
equations which satisfy the conditions on x‘-derivatives of 8 and T, given in 
(49) and (50) are 

the transform plane are 

iwv)  (1 + ym s )  - Ps[l + (y, + 1) s ]  + 838 = 0, 

- (sK /Km)  Tm = 0, 

- 
S(x’ : s) = B(s) exp ( - x’.Js) + C(s) exp { -x‘s(l+ y, s)-$}, (53) 

(54) TJX’ : s) = ~ ( s )  exp {x’ (Ks /K, )+} .  

The ‘constants’ A ,  B and G can now all be found using the three remaining 
conditions in (44), (46) and (48). Since we are only interested in the value of qn 
when x’ = 0, it  is only necessary to find A because 

(55 )  

from (54). The details are quite straightforward, if a little tedious, but it can 
eventually be shown that 

Tnh(o : 8) = A(s) ,  

(1 + a& .Js + Qf (s)} A (8) = ( T m  - To) 8-l 

where 

and 

(57) 
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Q is a ratio of the thermal properties of the gas and solid and is ordinarily quite 
large; of order lo2 is a typical value. Of the remaining quantities appearing in (56), 
a is defined in (45) (see also (32) et sep.), 7 and w are defined in (47) and @ is the 
heat of adsorption. 

Quite clearly the complete evaluation of T,(O,t'),  via (55) and (56) and the 
Laplace inversion theorem, is a formidable undertaking. Even if it could be 
accomplished, it would probably lead to such complicated expressions that 
any appreciation of the behaviour of the interface temperature would prove 
exceedingly difficult. Thus we intend to evade the issue by considering instead a 
number of special cases, which lead to simplification of the final results and which 
help to give some idea of the general behaviour of T,(O, t ' )  even though they do 
not present the complete, comprehensive, picture. 

6. The interface solid temperature. Special cases 

Putting both a and 7 equal to zero in (56) one finds that 

6.1. No temperature-jump, no adsorption 

If we suppose that 7 is equal to zero because the sum of the rate-constants for 
adsorption and desorption, namely k' (see (26)), is equal to zero, it follows that 
there is no gas flux into or out of the wall (see (28)). When a is zero, there is no 
temperature-jump and both gas and solid interface temperatures have the same 
value (see (44), for example). This case is therefore just one treated previously by 
the writer (1960 b)  and some discussion of the behaviour of Tm(O, t ' )  deduced from 
(59) is given in that paper. 

The broad behaviour of Tm(O, t ' )  can be summarized as follows. When t' + 0 
(and hence s -+ m), f ( s )  -+ Jym. In  the limit one readily finds that 

T -To 
T , ( O ,  0) = --L- 

1 + Q JY oo a 

Now one can write 

since K, = h,/pm CPm, where pm and Cpm are the solid's density and specific heat 
respectively, and it follows that 

where 

(62) 

(63) 

Conversely, when t' + co (and hence s + Q ) ,  f ( s )  + 1 and we have, in the limit 

T m  - TO 
1 + & .  

T,(O,m) = ___ 
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It can be verified that the results in (62) and (64) are precisely those which 
would arise if the heat conduction through the gas took place at  either constant 
volume or constant pressure, respectively, as evidenced by the forms of Q‘ and 
Q in each case. Thus immediately subsequent to t‘ = 0, the solid’s interface 
temperature jumps from zero to some value intermediate between zero and 
T, - To (which is equal to the temperature rise imposed upon the gas), this value 
being consistent with constancy of the gas’s specific volume (or density). As the 
disturbances propagate out into the gas there is a gradual changing over from this 
type of process to a constant-pressure type of process and T, (0,t’)rises accordingly 
to  the value given in (64). Further discussion is to be found in the paper just cited, 
which also goes on to examine the form of the pressure and temperature waves 
sent out into the gas as a result of the imposed disturbance. 

Whilst the special case a = 0 , ~  = 0 may be interesting, it does not seem to be 
a realistic physical model of the processes which occur near the interface, for 
reasons which will become apparent in the next sub-section. It is important to 
remember that t‘ is measured in units of molecular collision intervals, so that it  is 
hardly justifiable to speak oft’ values less than unity without attempting in some 
way to take account of the gaskinetic aspects of the problem. Furthermore, from 
a practical point of view, even values oft’ very much greater than unity corre- 
spond to very short intervals of real time at  all but the lowest pressures (e.g. at  
one atmosphere pressure about see elapse between successive collisions 
experienced by cne molecule. Thus t’ = 100 corresponds to a time interval of only 
one hundredth of a microsecond in these circumstances). 

6.2. Temperature-jump included, no adsorption 

Still assuming that is equal to zero (by putting k’ = 0), we find that 

In  order to invert this expression we note that pm has branch-point singularities 
at s = 0 and s = - l/ym in the complex s-plane. It can be confirmed that the 
usual Laplace-transform inversion contour (which runs parallel to the imaginary 
part of s-axis and to the right of s = 0 here) is reconcilable with the loop contour 
starting from s = proceeding round s = 0 in an anticlockwise direction, 
and ending up at s = we+in without crossing the negative real part of s-axis. 
When t’ 9 1, the dominant part of the integral on this last contour comes from 
the regions near s = 0 (since y, is O( 1) always) and it follows that we can legiti- 
mately set f(s) in (65) equal to unity and examine 

in these circumstances. Not surprisingly, in view of the comments in 9 6.1, (66) 
corresponds to heat conduction at constant pressure but this time with tempera- 
ture-jump included. It is the inclusion of this temperature-jump effect which 
helps to account in some measure for the gas kinetic aspects of the gas-solid 
interaction. 

We note at  once from (65) that its effect is quite radical, for now, as t’ -+ 0 (and 
hence s -+ co), we find that T, -+ 0 and not to a finite value as in $6.1. This seems 
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very much more reasonable from a physical point of view, since the finite rate of 
gas-molecular bombardment of the solid can hardly bring about a finite change of 
conditions in the solid in an infinitesimal time interval. The form of (65) for large s 
would still suggest that T,(O, t’)  has a behaviour consistent with some kind of 
constant-volume heat-conduction at small times. However, we shall not enter 
into a fuller discussion of this case since t’ 9 1 is more likely to be of practical 
interest. Using (66) in this region of time we readily find that 

where x2 = t’(1 + Q)2/Q2a2 (68) 
and erfc is the complementary error function (which approaches unity as z -+ 0). 
Since Q - lo2, as has been remarked earlier, we can write 

I n  the limit as t’ .+ 03 it follows that 
z2 21 t ’r2/(2-r)2.  (69) 

(70) T,(O, t’) .+ (Tw - TJ/1+ Q 
once again, as in the constant-pressure heat-conduction problem without tem- 
perature-jump. As (67) shows, however, the manner of its doing so is radically 
different in the two cases a = 0 and a =t= 0. We note that 

ezaerfcz - l / z &  (71) 
as x -+ 03. Thus T,(O, t ’ )  has still only reached 90 % of its final value when z is as 
large as 6, roughly speaking. From (69) we see that this can result in a t’ value of 
around 104 if r happens to be as low as 0.1, for example. This represents quite a 
considerable interval of time on the molecular scale and may even fall into the 
microsecond range within which experimental resolution is nowadays quite a 
simple matter. In  fact temperature-time histories which follow (67) remarkably 
closely have been observed in the shock tube, by using a thin-film platinum- 
resistance thermometer on the closed end-wall of the tube and reflecting the 
primary shock wave from it. These experiments, conducted by J. R. Busing in 
the College of Aeronautics 2 in.-diameter shock tube, have been briefly reported 
by the writer (1961) in connexion with some further theoretical work on possible 
relaxation effects in situations similar to those under discussion here. Figure 1 
shows an example of this close comparison between theory and experiment. 
The value of the accommodation coefficient, r ,  for an air-platinum combination 
was deduced to be about 0.03 from these experiments, which is a much lower value 
than that usually quoted from more conventional accommodation-coefficient 
measurements made at  very low pressures. In  the paper just cited it was (perhaps 
correctly) inferred that this low value of r was associated in some way with the 
high pressure (about 15 atmospheres) at which the shock-tube experiment was 
conducted. However, the explanation of the ‘physics ’ of the accommodation 
processes which was advanced there is perhaps a little too naive, a better explana- 
tion probably following from considerations of adsorption such as we are about 
to enter into in somewhat more detail shortly. 

It would seem that at high-pressure values, where nearly all of the active sites 
for adsorption are filled anyway, any additional increase of p brings about a 
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(relatively) small increase in this number. That is, AN is probably 'small' and 
7 1~ 0 on this account, rather than because k' is zero, as we have assumed earlier. 
This fact would account for the non-appearance of some of the effects to be 
discussed in the next subsection in the experiments under discussion and for the 
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FIGURE 1. Comparison between theory and experiment for case of temperature-jump but 
with no adsorption. The full line curve is 1 - ez' erfc z, and the circles indicate values taken 
from an experimental record. The slight falling-off of the experimental curve below the 
theoretical values for z2 < 2 can be almost entirely accounted for by the rise-time of the 
electronic measuring apparatus. 

good agreement between experiment and equation (67). The low value for r in 
the high-pressure experimental circumstances would seem to be a result of the 
fact that specular molecular reflexion is just more likely to occur from surfaces 
which are more or less completely covered by adsorped molecules. 

6.3. Adsorption included 

We must now turn to a consideration of the effects of adsorption on T,(O, t ' )  and 
for this purpose we should examine the whole of the expression for A(s)  in (56),  
in particular the terms multiplied by the parameter 7. Once again it is possible 
to verify that the Laplace inversion contour in the complex s-plane can be 
replaced by the loop contour described at  the beginning of Q 6.2. Now, however, 
the singularities of A(s )  are branch points at s = 0 and - 1/ya plus the addition 
of a simple pole at s = - w. It does not seem unreasonable to confine our attention 
to the time region t' 1, especially since this introduces some considerable 
simplifications as we shall see. First of all, however, it is necessary to have 
some information about the order of magnitude of w ,  particularly, and we may 
also investigate the value of 7 at the same time in order to give the problem some 
numerical significance. 

The number of active sites, N,, appears to be about 1015 per cm2, roughly 
speaking, for a variety of solid substances. Choosing one atmosphere pressure as 
a convenient example and also considering a gas of molecular weight of about 
30 at a temperature of 300"K, equation (22) shows that k, is of order 108sec-1. 
If we are looking a t  surfaces for which IT lies between 0.1 and 0.9, (21) shows that 
led will lie between lo9 and lo7 sec-l, so that k' may lie between lo9 and 108 sec-1 as 
an upper limit at  this pressure. Either way, it seems possible that w (which is 
equal to k'~/&) will be small compared with unity (since K/U: 2: 10-la sec for the 
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conditions chosen). The estimates here are somewhat crude but, in attempting to 
indicate general adsorption and desorption behaviour, they are sufficient to make 
the point, particularly since the conditions may vary quite considerably from 
one gas-solid combination to another. It is possible that one may meet Ic’ values at 
N.T.P. as high as 1O1O see-l or even higher, so that w becomes 0(1) or greater. 
Because of the analytical simplifications which result for w < 1, we shall treat 
only this case and shall not examine the ‘faster’ adsorption processes which 
have time constants of order K / a L  or less. 

we note that A, is equal to mn, CPm a, times K / a ,  where n is the 
number density of the gas. We could therefore write 7 (see (47)) in the form 

To estimate 

its units being those of temperature. The adsorption energy seems usually to be 
measured in terms of kilocalories per gram, so that ($/C’,) is probably O(lO3 OK) 

whilst, as we have seen, k‘ may be typically O( los see-l). We can put n, and a, as 
O( 1019 em-3) and O( lo4 cmlsec) respectively, so that it remains for us to estimate 
AN.  [So far we can say that 77 is O(AN x 10-l2 OK)]. Since AN cannot be greater 
than N,, which is O( 1015 it follows that an upper limit for 7 is around 103 O K .  

I n  any case, it seems possible that the ‘temperature perturbation due to adsorp- 
tion’ can become comparable with, or even greater than, the actual temperature 
rise T, - To. For this reason it seems possible that the group of terms multiplied 
by 7 on the right-hand side of (56) could give T,(O, t’) variations quite comparable 
with those arising from T, - To alone (i.e. the first term on the right-hand side 
of (56)). 

If, as a purely hypothetical limit, we imagined that $was zero, it would be only 
the terms involving (a%/$) in (56) which would contribute to T,(O, 6‘). Since we 
have taken $ as 0(103 calories) and a, as O( lo4 cmlsec) above, it follows that these 
terms give equivalent ‘temperature perturbations ’ some 10 to 102 times smaller 
than the 103 O K  quoted in the previous paragraph for the heat of adsorption effect. 
We shall examine the case $ = 0 in a little more detail below. 

Before proceeding with the analysis of the adsorption case it is perhaps 
necessary to stress, once again, that the foregoing estimates of numerical magni- 
tudes are extremely crude, and that our considerations here are purely heuristic. 

Now that we have decided that w 6 1 is at least a reasonably practical case, we 
can simplify matters somewhat by confining our attentions, in the main, to the 
case t‘ >> 1. This implies that we need only consider the region Is1 < 1, on the loop 
contour described earlier, in order to obtain a first estimate of T,(O, t’)-behaviour 
for large dimensionless times. Thus we can approximate (56) by putting Is1 < 1, 
or more strictly 1st < l/rm, whilst at  the same time admitting that (sI may be of 
the same order as w ,  since the latter is < 1. For the reason that we wish to let 
(a:/$) vary over a wide range (as mentioned previously), we shall retain the 
terms involving this quantity. AS a result of these assumptions and approxima- 
tions it should now prove possible to estimate the dominant terms in T,(O, t’) for 
large t’ by inverting the transform 
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(Note that it is necessary to retain terms in 014s since 01 may be 9 1, i.e. r < 1.) 
Using (55), (72) can be rewritten in the form 

where P = (1 +&)/a&. (74) 

Inversion of (73) can be accomplished using the list of formulae given by Erdelyi 
et al. (1954) and the convolution theorem for Laplace transforms. We note the 
following results from the reference just cited, using the symbol =I to denote ‘has 
the Laplace transform ’ 

1 
__- pePZferfc (p Jt’) 3 (yls+p)-l, 
(nt‘)& (751 

Using the convolution theorem and reorganizing the basic results by inte- 
grating by parts, we can eventually show that 

P { e - W f  - eb2f erfc (P Jt’)) - ~ Jw e-d  i erfi(wt’)t 3 ( s  + w ) - l ( ~ s  + ~ ) - 1 ,  

w+p2 w + p 2  

(79) 

These relations are sufficient to enable us to construct a first estimate of TmL(O, t ’ )  
from (73). We have written 

The final result can be expressed most concisely as follows: 

(1 + Q) T,(O, t’) N (Too - To) ( 1  - eza erfc x )  

+ r( 1 + b2)-l ([(l/PQ) - (a%/$)] [e-bazs - eza erfc 21 

- b[(1 /pb2)  + (1 + Q)/pQ- (a%/@)] e-b2zaierfi(bz)), (81) 

where 

The first term of (81 )  is precisely the same as the result given in (67) of the 
previous section. It therefore accounts for the effects of heat conduction alone a t  
constant pressure (with temperature-jump included). The remaining terms in (81) 
(i.e. those multiplied by 7) account for the adsorption processes. We consider the 
behaviour of these additional terms only in two limiting cases: (a)  when (&/$) is 
so small as to be entirely negligible, so that these terms contribute just 

[e-bzza - eza erfc 21 - b [ -!L. + -1 1 + Q  e-b2z* i erf i(bx)) , (83) 
Pb2 PQ 
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and (b)  when @ = 0 ,  so that these terms contribute 

- $( 1 + b2)-1 (e-bZz2 - eze erfc z - b e-baz2 i erf i( bz)}, (84) 

where 7’ = q(aL/@) = ma, ~k’ANlh, ,  (85) 

(see (47)). The two cases (a )  and ( b )  correspond, respectively, to very large and 
very small (zero) adsorption energy. 

Clearly any actual picture of the interface temperature-time history is going 
to depend on the magnitudes of all the parameters involved. We can perhaps best 
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FIGURE 2. Basic temperature-time curve, representing the effects 
of temperature-jump done. 
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FIGURE 3. Additional effect of adsorption for large adsorption energies. 

illustrate the general possibilities as follows. First of all, figure 2 is a plot of 
1 - ez2erfcz, which we can call the basic temperature-time curve. Strictly speaking, 
figures 2-4 represent the ‘component parts ’ of the interface temperature varia- 
tions with time for t’ & 1. Since we are assuming that r is O( 10-l) in order that the 
effects should occur in physically observable time intervals, we may interpret 
t‘ 9 1 to mean, roughly, z 2 1. However, the differences between the behaviour 
of T,( 0,  t’) for small and large times are only those resulting from a transition from 
constant-volume to constant-pressure heat conduction in the gas, and these 
differences are not of a radical nature. For this reason, figures 2-4 are probably 
not bad estimates of the experimentally-observable interface temperature for 
all z. Figures 3 and 4 illustrate expressions (83) and (84) (or rather the curly 
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bracket part of these expressions) for particular values of b2, /3 and Q. All of these 
may vary over considerable ranges of values in practice, but we choose 

b = 1, p = 10-l) Q = 10’ (86) 

as being at least possibly representative. Note that putting p = 10-1 and Q = lo2 
implies that Y N 0.2 (see equations (74) and (45)). Different values of b, /3 and Q 
will alter the scale of the curves in figures 3 and 4 and also their shapes somewhat 
(since the scaling is clearly not uniform over the whole range of 2). However, 
these figures are perhaps sufficient for the discussion to follow. In  plotting 
figure 3 we note that 1/pQ is very small compared with b(1 + Q ) / / 3 &  when Q is 
0(102), unless b happens to be O(Q-1). We can invariably take Q 9 1 for gas- 
solid combinations, so that we can write 

b ci 4 4 2 - r ) / r .  (87) 
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FIGURE 4. Additional effect of adsorption for zero adsorption energy. 

Bearing in mind experimentally-observable time scales (let us say t’ > lo2) we 
require r to be < 10-1 in order for any interface temperature variations to be 
seen. (This corresponds to t’ = lo2 when x = 1, as can be seen from the first of 
equations (82) for large Q.) We have fixed o in the region 10-1 to so that if we 
are to see anything at  all of the temperature variations experimentally, we see 
that b must have values not lower than about 1. Consequently we intend to 
ignore the fmt term inside the curly brackets in expression (83) and plot just 

(88) - e-sa i erf i(z) 

in figure 3. This should give us a reasonable idea of the ‘large $’-behaviour of 
T,(O, t ’ )  as a result of adsorption. 

We can now give a rough indication of the possible behaviour of T,(O, t ’ )  when 
adsorption is included. To do so we must imagine that the curves in either 
figure 3 or figure 4 are ‘added on’ to the curve in figure 2, their scales being 
expanded or contracted in either direction depending on how much the physical 
parameters differ from those in (85). That is to say, we use either figure 3 or 
figure 4 in the limiting cases of either very high or very low adsorption energy, $. 
In  the intermediate cases, where a: and $ may be comparable in magnitude, we 
must attempt to imagine a whole variety of combinations of curves (something 
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like those in figures 3 and 4) which are to be added on to the basic curve of figure 2. 
The range of possibilities is clearly enormous, but we have sufficient information 
here to estimate T,(O, t‘j for most of these possibilities once ,8, b, Q ,  7 and T, - To 
are known. 

When @ (or 7) is very large, figure 3 shows that T,,(O,t’) will approach its 
asymptotic value (which is still (T, - To)/( 1 + &) be it noted) quite rapidly in the 
early stages (in comparison with the basic curve). The contribution to T,(O, t ’ )  
from the release of adsorption energy may be so large that T,(O, t’) overshoots the 
asymptotic value for some z and approaches it from above, rather than from 
below as in the basic curve. 

When @ (or 7) is very small the predominant effect, physically, must be due to 
the inrush of gas on to the surface. The expansion wave which is necessary to 
bring this about lowers the gas temperature and, ‘adding’ figure 4 on to figure 2,  
we see that it is conceivable that T,,(O, t’) may first decrease below its ambient 
value, before finally increasing to the asymptotic value given in (70). 

During the very early stages in the development of the flow past a sphere 
mounted in a shock tube, the primary shock wave reflects from the sphere as a 
very-nearly concentric spherical surface. This physical situation is therefore 
quite similar to the one that we have been studying here. It is interesting, but 
not in any way conclusive of course, that both types of T,(O, t’)-behaviour listed 
above have been observed from a stagnation-point heat-transfer gauge mounted 
on such a model. The pressures arising at the stagnation point were low in these 
experiments (of order 10-1 to atmosphere) and the duration of the effects was 
short (in the region of one microsecond andless). It is just possible that these may 
have been observations of adsorption effects: they could be repeated and did not 
seem to be a result of the behaviour of the electronic measuring gear. 
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